Air pressure forecasting for the Mutriku oscillating-water-column wave power plant: Review and case study

JM Silva, SM Vieira, D Valério, JCC Henriques, PD Sclavounos
in Volume 15, Issue 14. Special Issue: Advances in Wave Energy Conversion Systems [link, pdf, live app]

September 23, 2021

Abstract

The high variability and unpredictability of renewable energy resources require optimization of the energy extraction, by operating at the best efficiency point, which can be achieved through optimal control strategies. In particular, wave forecasting models can be valuable for control strategies in wave energy converter devices. This work intends to exploit the short-term wave forecasting potential on an oscillating water column equipped with the innovative biradial turbine. A Least Squares Support Vector Machine (LS-SVM) algorithm was developed to predict the air chamber pressure and compare it to the real signal. Regressive linear algorithms were executed for reference. The experimental data was obtained at the Mutriku wave power plant in the Basque Country, Spain. Results have shown LS-SVM prediction errors varying from 9% to 25%, for horizons ranging from 1 to 3 s in the future. There is no need for extensive training data sets for which computational effort is higher. However, best results were obtained for models with a relatively small number of LS-SVM features. Regressive models have shown slightly better performance (8–22%) at a significantly lower computational cost. Ultimately, these research findings may play an essential role in model predictive control strategies for the wave power plant.

Code available in: Visualization

Keywords: | Wave energy | Oscillating water column | Pressure forecasting | Support vector machines | Biradial turbine | Mutriku power plant |